
Special
Issue Computer Science K–8:

Building a Strong Foundation

Special
Issue Computer Science K–8:

Building a Strong Foundation

Special
Issue
CS K–8

Computer Science Teachers Association
Association for Computing Machinery

2 Penn Plaza, Suite 701
New York, New York 10121-0071

Copyright © 2012 by the Computer Science Teachers Association (CSTA) and the
Association for Computing Machinery, Inc (ACM).

Permission to make digital or hard copies of portions of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from:
Publications Dept. ACM, Inc. Fax +1-212-869-0481 or E-mail permissions@acm.org.

For additional copies please contact: cstapubs@csta.acm.org

Forward

Over the past few decades, computers have transformed both the world our students live in and
the world of work and innovation that they will join in the future. No area of human endeavor
or enterprise will be untouched by technology…technology that will require technological tool

builders, as well as, tool users. More than ever, to be well educated and to lead empowered lives our
students will require a sound foundation in the principles and practices of computer science. There is no
time too soon to begin the process of building that foundation.

Recently, CSTA has witnessed a growing interest in computer science at the elementary and middle school
levels. In some ways, increased recognition of the importance and relevance of computer science stems
from a growing awareness of the need for computational thinking skills for all students and the importance
of embedding this learning throughout the school experience. Excellent new teaching tools and curricula
are also making computer science learning more accessible and engaging for students of all ages.

This publication draws together articles previously published in the CSTA Voice, as well as newly-
commissioned pieces by key CSTA thought leaders. Our hope is that this collection will inspire innovative
thinking, offer new ideas, and provide practical strategies for ensuring that computer science concepts
are deeply woven into all students’ learning experiences throughout their formal and informal education.

On behalf of CSTA, we wish to thank all of the authors who have so kindly contributed to this resource
and all of our members who continue to strive to prepare their students to thrive and excel in the new
global economy.

Pat Phillips, Editor

Steve Cooper, Chair, CSTA Board of Directors

Chris Stephenson, Executive Director

CSTA MISSION
The Computer Science Teachers Association is a membership
organization that supports and promotes the teaching of
computer science and other computing disciplines. CSTA
provides opportunities for K–12 teachers and students to better
understand the computing disciplines and to more successfully
prepare themselves to teach and learn.

Special
Issue
CS K–8

co
ve

r
ph

ot
o

s:
 ist

o
ckp

h
ot

o
 ©

 m
o

nk
e

yb
us

in
ess

i
ma

g
es

 (l
eft

)
; i

st
o

ckp
h

ot
o

 ©
 k

ri
st

ian

 s
ek

ul
ic

 (m
id

dl
e)

; i
st

o
ckp

h
ot

o
 ©

 m
ed

iap
h

ot
o

s
(r

ig
h

t)

1

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

perspectives
Making the Case for CS Education in K–8 . 2
A Philosophy for Children and Computing . 3
Defining Computational Thinking for K–12 . 4
Middle School CS? Yes! . 5
Programming in Kindergarten . 7
K–8 Standards . 8
Computer Science: Critical K–8 Learning. 10

implementation
Teaching Kids Programming. 12
Exploring Thinking Myself . 12
Game Programming with Alice. 13
Teaching Java to Fifth Graders. 14
Supporting Kids’ Explorations of Computation. 15
Logo: A Language for All Ages . 16
Integrating CS into Middle School Projects. 18

engagement
Introductory CS in the K–3 Classroom . 19
Active Learning Ideas for K–5. 19
Media Mania with Kodu . 20
10-Year-old Detectives . 22
College for Kids . 22
An 8-Day Plan with Etoys. 23
Press Play. 24
Computer Science as an Art Form . 24
Make it Fun!. 25
Filling the Pipeline from the Middle School. 26

computer science k–8 authors. 27

Special
Issue
CS K–8

pe
rs

pe
ct

iv
es

2

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

 Making the Case for CS Education in K—8
Patrice Gans

Over 25 years ago, Seymour Papert published his landmark book, Mindstorms: Children, Computers,
and Powerful Ideas. In the forward, “The Gears of My Childhood,” Papert first proposed the idea
that computers would revolutionize education. “The computer is the Proteus of machines. Its
essence is its universality, its power to simulate. Because it can take on a thousand forms and can

serve a thousand functions, it can appeal to a thousand tastes” (Papert, 1980).
The power of the computer is its ability to be something for everyone. Computing is not a goal in and of

itself, but the means to an end, enabling students to take control, solve problems, and build a future based
upon their imagination and creativity. Given the opportunity to provide students with this power and
open doors to untold opportunities, what teacher wouldn’t jump at the chance?

Seymour Papert, a mathematician and protégé of Jean Piaget (early 20th Century developmental psychol-
ogist, who observed that children acquire knowledge by acting on the world around them), created a prac-
tical and powerful way for teachers to implement constructivist learning in the elementary classroom.
In 1967, Papert designed LOGO, the first programming language specifically for children. Through LOGO,
Seymour Papert demonstrated that children can learn best when they use computers in a way that puts
them in the active roles of designers and builders. With these and other computer science (CS) tools, teach-
ers now have the implements to help young children develop powerful competency in the four C’s (Critical
thinking and problem solving, Communication, Collaboration, and Creativity and innovation) and begin
to develop the “algorithmic” or “computational thinking” skills needed to meet 21st Century challenges.

Skills integral to CS learning are valued and measured across the curriculum. Since the 1960s, CS has
been shown to be an ideal addition to the elementary school curriculum. All of the four C’s skills develop
when students are engaged in CS projects and activities. Students must internalize the content of a subject
before they can “compute” the knowledge into a computer game, multimedia production, or computer
program. As demonstrated in the articles in this special CSTA compendium, examples abound. Multi-
media stories can be crafted in language arts classes, multi-level computer games can be designed in
mathematics, and art and music projects can be delivered through electronic media.

Rarely are such activities solo events; communication and collaboration are integral components of any
K–8 computing project. The give-and-take common in collaborative work around a complex project involves
more than just one-way communication of ideas; it requires focused listening, reforming ideas, and more.

And problem-solving takes center stage. Students discover that the first step in problem-solving is to
state the problem clearly and unambiguously. Students also find they must learn to navigate the iterative
design process inherent in a computing activity.

1.	 Start with that clearly-stated challenge.	 5.	 Experiment and debug
2.	 Gather information.	 6.	 Gather feedback from others.
3. 	 Formulate a plan.	 7.	 Revise and redesign
4.	 Create a working prototype.	 8.	 Publish and begin again.

Traditionally, students are first exposed to CS in high school Advanced Placement (AP) CS if they are
fortunate enough to be at a school that offers a rigorous CS course. Unfortunately, female and minority
students do not enroll in numbers representative of their proportion of the population. According to
Computing in the Core coalition (of which CSTA is a founding member) only 17% of AP CS test-takers in
2008 were women, although women represented 55% of all AP test-takers and 51% of the population. In
addition, participation in AP CS tests among underrepresented minorities has increased in the past 10
years, but is only 11%, compared to 19% of all AP test-takers. K–8 CS education may be able to help reverse
these trends by illustrating for all students the potential for personal power afforded by computing skills.

As an elementary school technology teacher, I know from experience that students can develop a love
for computing, sophisticated skills, and a desire to learn more during their primary school years. Re-
searchers are considering the possibility that early exposure will translate into increased enrollment and
a life-time engagement in CS. It is believed that positive experiences at an early age will motivate students
to further explore the opportunities that a CS education has to offer. It’s important to take advantage of this
developmental stage to build a CS literate and functional population. It is in everyone’s best interest and
we have the tools to make it happen.

This CSTA publication, Computer Science K–8: Building a Strong Foundation, provides a review of current
thought on K–8 CS education, explores how CS topics and concepts can impact learning in the K–8 classroom,

perspectives

3

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

and offers practical strategies and resources. Here you will find updates on research from higher education,
including a study at Harvey Mudd College on a new approach to teaching middle school CS curriculum, ideas
on teaching CS skills by playing criminal detective using databases, suggestions for planning afterschool
and summer CS camps, plans for integrating CS into classes as diverse as fine arts and mathematics, and
personal experiences of dozens of classroom teachers using a wide variety of tools and techniques.

We hope that these articles will engage and inspire you so that you might do the same for your students.

Learn more:
Papert, S. (1980) Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
CSTA K–12 Computer Science Standards csta.acm.org/Curriculum/sub/K12Standards.html
ACM K–12 CS Model Curriculum, 2nd Edition csta.acm.org/Curriculum/sub/CurrResources.html

 A Philosophy for Children and Computing
Mark Dorling, Daniel Mace, and Roger Sutcliffe

T raditional philosophy dealt with fundamental questions of life such as “What should I do?” (eth-
ics) and “How should we decide?” (politics), as well as, “What can I be certain of?” (knowledge).
In the 20th Century these same questions were narrowed down and applied to specific areas of
life—resulting in studies such as Philosophy of Religion, Philosophy of Language, and others.

There is now a developing branch of philosophy dealing with computer science, with courses due to open
at a number of United Kingdom (UK) universities in the autumn of 2012.

While these new branches of philosophy, focusing on specific content, have been opening up in the past
40 years or so, there has been another development in philosophy, extending the range of people who
engage with it. Specifically, we are talking about children; their practice of philosophy or philosophizing is
usually referred to as Philosophy for Children, or P4C, for short. This is a simple but powerful way of devel-
oping children’s reflective and critical-thinking skills (and philosophies!) for learning and for life.

In a changing technological society it is vital that we prepare children to not only use technology but to
be reflective about how it works, and its use by themselves and others. Mark Dorling, project coordinator
of Langley Grammar School’s Digital Schoolhouse project, and Roger Sutcliffe, one of the world’s leading
experts in P4C and past President of SAPERE (Society for Advancing Philosophical Enquiry and Reflection
in Education), have developed an exciting variation on this theme: Philosophy for Computing.

These Philosophy for Computing lessons have been designed and delivered by Daniel Mace, teacher of
Advanced Skills at Langley Grammar School. By collaborating with Mark and Roger, Daniel has created
a series of structured, yet fun and challenging, sessions based on the accelerated learning model. These
lessons incorporate critical thinking skills, high-order creativity, and co-construction of ideas to address
philosophical issues relating to:

•	 addiction to computers and the Internet,	 •	 advertising on the Internet,
•	 artificial intelligence,	 •	 censorship on the Internet,
•	 digital finger print and hacking on the Internet,	 •	 eSafety and Internet grooming/preying, and
•	 CIS data and privacy, 	 •	 security.

For example, the first session focused on the digital fingerprint that is left on the Internet by users as
they click on various websites and give personal information. The first half of the session focused on the
everyday psychology behind how advertisements work, before showing how the Internet magnified the

CSTA K–12 Computer Science Standards A core
set of standards for a CS curriculum and its
implementation.

Curriculum Resources Materials and tools for
meeting the learning standards described in the
CSTA K-12 Computer Science Standards.

Brochures, Posters, Videos Resources for pro-
moting CS fields and careers.

Source Web Repository A database of instruc-
tional materials that can be searched by grade
level, title, author, or subject.

CSTA Resources of Special Interest for K–8

Special
Issue
CS K–8

pe
rs

pe
ct

iv
es

4

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

issues involved. Students were shown various video Internet advertisements and asked to arrange them
according to their appeal. This generated a short discussion on how advertisements are designed to target
personality. Paired-group work focused on the skills needed to create personalized advertisements for
their partners using a series of random words to prompt student thinking, and then, designing picture
postcards of their advertisements using creative drawing prompts.

After a short break these ideas were applied to the Internet. An information race (a comprehension
game based on a short piece of text) helped students learn how the Internet collects information from
various sources, such as Facebook, Google searches, and others. Students were then asked to filter out the
most important sources and identify the most dangerous. The consequent discussion exposed students’
use of websites, their thoughts about the dangers, and the beginnings of a class code that encouraged their
peers to use the Internet more safely. Finally, a clip from Minority Report, a film that showcases a world
in which advertisements continuously target people’s minds as they walk down the street, brings home
this idea to students and provides a stimulated P4C debate about their own roles in feeding the potential
power of the Internet.

 The end product of these lessons is that pupils develop their own codes of practice for safer and more
responsible use of every-day and emerging technologies. This is achieved through nurturing a trust
between pupils and teachers to create an environment where pupils are more willing to talk freely about
their own experiences and share their concerns with the class. This allows the students to establish their
own shared understanding and priorities, which hopefully will create a long-lasting effect.

The techniques described in this article have been applied to students in both Primary (7–10 years of
age) and Secondary (11–16 years of age) with great success! For more information about this work into the
teaching of the ethics of computing, please email Mark Dorling at: dsh@lgs.slough.sch.uk.

Learn more:
Digital School House www.digitalschoolhouse.org.uk
SAPERE sapere.org.uk

 Defining Computational Thinking for K—12
Chris Stephenson and Valerie Barr

W hen Jeannette Wing launched a discussion regarding the role of computational thinking
(CT) across all disciplines, she ignited a profound engagement with the core questions
of what computer science is and what it might contribute to solving problems across the
spectrum of human inquiry. Wing argued that advances in computing allow researchers

across all disciplines to envision new problem-solving strategies and to test new solutions in both the
virtual and real world.

In the summer of 2009, the Computer Science Teachers Association (CSTA) and the International Society
for Technology in Education (ISTE) began a multi-phase project supported by the National Science
Foundation, aimed at developing an operational definition of CT for K–12.

Developing an operational definition of, or approach to, CT that is suitable for K–12 is especially chal-
lenging because there is, as yet, no widely-agreed-upon definition of CT. In addition, to be useful, this
definition must ultimately be coupled with examples that demonstrate how CT can be incorporated in
the classroom. The primary work of the project was therefore carried out during two workshops; the first
focused on developing a shared understanding of CT, and the second on creating exemplar resources
and strategies that would support the implementation of CT concepts and skills across grade levels and
subject areas.

In attempting to define what distinguishes CT from other problem-solving methods, the educators
involved in this project (more than 30 educators representing all grade levels and multiple subject areas)
focused on the centrality of the computer and a set of concepts encompassed by CT.

“CT is an approach to solving problems in a way that can be implemented with a computer. Students
become not merely tool users but tool builders. They use a set of concepts, such as abstraction,
recursion, and iteration, to process and analyze data, and to create real and virtual artifacts. CT is a
problem-solving methodology that can be automated and transferred and applied across subjects.”

perspectives

5

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

They also envisioned CT manifesting in the classroom through active problem-solving. They saw stu-
dents “engaged in using tools to solve problems”, “comfortable with trial and error”, and working in “an
atmosphere of figuring things out together.”

The project has already resulted in the creation of a number of useful artifacts, perhaps the most impor-
tant being this operational definition of CT.

CT is a problem-solving process that includes (but is not limited to) the following characteristics:
•	 formulating problems in a way that enables us to use a computer and other tools to help solve them;
•	 logically organizing and analyzing data;
•	 representing data through abstractions such as models and simulations;
•	 automating solutions through algorithmic thinking (a series of ordered steps);
•	� identifying, analyzing, and implementing possible solutions with the goal of achieving the most efficient

and effective combination of steps and resources; and
•	 generalizing and transferring this problem-solving process to a wide variety of problems.

It has also led to identification of a number of dispositions or attitudes that are essential dimensions of
CT. These dispositions or attitudes include:

•	 confidence in dealing with complexity,
•	 persistence in working with difficult problems,
•	 tolerance for ambiguity,
•	 the ability to deal with open-ended problems, and
•	 the ability to communicate and work with others to achieve a common goal or solution.

In addition to these definitions, the project team created a number of resources to support the imple-
mentation of CT in K–12. These include:

•	� Computational Thinking Teacher Resources collection that includes a CT vocabulary and progression
chart, nine CT Learning Experiences, and CT classroom scenarios;

•	 �Computational Thinking Leadership Toolkit, as a companion piece to the Computational Thinking Teacher
Resources, includes making the Case for Computational Thinking, Resources for Creating Systemic
Change, and a guide for implementation strategies;

•	 a one-page flier describing CT; and
•	 key articles written by members of the project team and researchers.

All of these resources are available on the CSTA website. We strongly encourage you to review these re-
sources and join the conversation about how we can best enable all of our students to incorporate CT con-
cepts and skills into their knowledge base. This project is supported by the National Science Foundation.

Learn more:
Computational Thinking Resources csta.acm.org/Curriculum/sub/CompThinking.html

 Middle School CS? Yes!
Zachary Dodds, Mike Erlinger, and Elizabeth Sweedyk

“T here’s no recession here!” chirps an Apple Store employee, adding me to the bottom of untold
screens of names. In light of the diverse group who overflow the cavernous space, it’s hard
to argue with his contrived cheerfulness. Here, headscarves jostle with ball caps and shirt-
sleeves and ink sleeves crisscross the crowd-gathering, flickering displays. Nowhere is the

American ideal of equal opportunity more fully realized than in consumption, and computation is at the
top of many consumers’ lists.

A generation ago, computation was a tool with relatively little impact on day-to-day life. That genera-
tional gap remains today—not in the consumption of computation, however, but in its creation. As a result,
computational enthusiasm and computational skills are unbalanced. The Department of Labor employ-
ment forecasts confirm this imbalance between the computational skills of our schools’ graduates relative
to the career opportunities available. The imbalance appears, too, in who develops computational skills. The
relative absence of women and ethnic minorities in computer science (CS) is well documented in a variety of
studies. And in far too many schools, CS does not appear in curricula until late in high school, if at all, and by
the time it does, many students have been convinced that it is not something that people like them do.

Special
Issue
CS K–8

pe
rs

pe
ct

iv
es

6

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

How and when should computation appear in school? Certainly, computation as a tool should perme-
ate K–12 education; in light of modern life, there’s probably no way to stop this from happening, even if
we wanted to. Yet for an initial exposure to computation per se, middle school offers us an opportunity
to make computational creativity as much a part of students’ identities as its consumption is already. At
Harvey Mudd College (HMC) we have undertaken two efforts to integrate middle school teachers and
students into the culture of creating computation. The first approach is through the design and deploy-
ment of educational games, an NSF project entitled The Games Network: Games for Students, Games by
Students. Our second effort is a middle school curriculum named Middle-years Computer Science, or MyCS.

The Games Network addresses the misunderstandings students may have about the practice of CS. Our
approach is to engage middle school students in a semester-long software development project carried out
with college-level CS students. The deliverable is one of the modern-day CS artifacts that all students relate
to: an educational computer game.

At the start of each semester, middle school teachers provide HMC’s software development class with a
list of learning objectives; e.g., items drawn from the sixth and seventh Grade-level Content Expectations
(GLCE). Each four-person software development team chooses a GLCE they will target with their game.
The middle school teachers and students are integrally involved throughout the development, providing
bi-weekly written evaluations of the game’s concept, storyline, and user interface. Middle school students
also act as testers of game prototypes and beta releases. This first-hand involvement dispels CS stereotypes
and offers insights into some of computer science’s most compelling challenges.

For middle school teachers, participation does not require any specialized background. Yet it allows them to:
•	 acquire media-rich, interactive learning tools designed specifically for their classrooms, at no cost;
•	 engage their students in designing tools for their own learning; and
•	� support literacy efforts by providing an authentic context for communication between their students

and college students/faculty.

For CS professors who teach (or want to teach) game design and development, HMC’s Games Network
model allows them to:

•	� enhance game projects by providing their students with a real customer who has an authentic need
for game software,

•	� cultivate a sense of social responsibility in their students and allow them to produce software that
can have positive impact, and

•	 provide their students with the opportunity to serve as role models for younger students.

The design and testing of games provides a natural link with students’ everyday experience of compu-
tation. Our middle school CS curriculum, MyCS, pushes this connection further by making computation
itself “the game.” MyCS’s goal is to develop greater computational awareness and sophistication of larger
numbers of middle school students than existing curricula do. Though not truly exclusive to middle
school, MyCS does not shy away from the turmoil of individual- and group-identity formation that ener-
gizes middle school students. Rather, MyCS seeks to build bridges amidst the family and societal pressures
that influence the long process of self-definition. As students construct their many answers to “Who am
I?” they necessarily also answer “Who am I not?” For its part, MyCS seeks to place CS in the former category
more often than the latter.

Resources for engaging students with the “game of computation” abound, but many of those resources
lack an overarching structure. For instance, the online games FactoryBalls and LightBot provide compel-
ling, minds-on introductions to procedural thinking—with the same requirement for precision and clarity
that general-purpose computer programming demands. MyCS supplements these kinds of resources with
our own Picobot, a Karel-like automaton that introduces an abstract language—with all of the concomi-
tant benefits and drawbacks—into students’ specifications.

MyCS’s hands-on activities similarly convey the building blocks of reproducible procedures and abstrac-
tion. In one such exploration, student teams design a small LEGO structure, which they then encode with
a set of descriptive labels: the coordinates, shape, orientation, and color of each brick. Students proceed
to represent those labels with a binary code, again of their own design. With the binary codes and their
explanations, the teams cover their designs and swap their descriptions. Each pair then strives to build
the structure specified by their classmates’ codes. The activity can have telephone-like results as amusing
differences arise between original and rebuilt structures. In this case, however, students can explicitly
track down the source of any errors (and correct them) whether within the encoding, context building,
context interpretation, or decoding phases of the process. These experiences map immediately to execut-
able software, regardless of architecture or language.

perspectives

7

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

To bring curricular structure to these kinds of activities, MyCS builds on the broad shoulders of Exploring
Computer Science (ECS). UCLA’s innovative effort to democratize CS for tenth- through twelfth-grade students,
ECS has enjoyed a successful deployment in high schools throughout the greater Los Angeles area. For its
audience, MyCS shortens the ECS curriculum, emphasizing and expanding ECS’s hands-on activities that ask
students to create and shape computation. A pilot workshop, supported by Google and the National Science
Foundation in summer 2011, brought together teachers of many different grades, CS undergraduates, and CS
professors in order to create a first-draft MyCS curriculum, based on ECS. Three schools piloted the resulting
one-semester offering in the fall of 2011, with an expanded effort slated for spring of 2012.

Already, the experiment has demonstrated the many challenges that remain, as well as the rewards
for grappling with them. One challenge is political: how should a curriculum like MyCS fit into the well-
established technology courses already in existence? Our vision is that MyCS would supplement, not replace,
those courses; MyCS can offer insights into CS as a discipline to complement skill-development in specific
(and rapidly changing) suites of computational tools. Details differ from school to school. In Claremont,
for instance, one section of the district-required technology course has dedicated a day each week to MyCS
materials. These “CS Fridays” have become a course highlight, popular with teachers and students alike.

A second challenge is communication: maintaining a high-bandwidth feedback loop among middle
and high school teachers, college CS students, and instructors. A summer workshop is only a starting
point. We must cultivate resources such as student-staffed homework hotlines, out-of-the-box student
demonstration days, and equipment-lending libraries that support curricular activities like ECS’s com-
puter-disassembly “scavenger hunt.” Harvey Mudd College’s experiments with these collaborations show
that, when resources are available, teachers and students at the middle school level express a demand for
CS comparable to the recession-proof pull of CS’s artifacts.

Like its students, middle school CS is in the early stages of self-definition, weaving among the pros and
cons of a bombardment of questions: “Should computational creativity be part of the curriculum?” “Should
it be a choice or a requirement?” “How do we balance CS itself with its influential toolkits?” “Does CS detract
from—or can it, perhaps, enhance—middle school students’ journeys of choosing who they are?” All of these
questions remain open, to be sure, but we believe that efforts like MyCS and The Games Network can help
students, teachers, and colleges answer them to the mutual benefit of all of those groups.

Learn more:
Occupational Outlook Handbook www.bls.gov/ooh
Margolis, J. et al. (2008). Stuck in the shallow end. MIT Press.
FactoryBalls www.bartbonte.com/factoryballs
LightBot armorgames.com/play/2205/light-bot
Parlante, N. et al. (2010). Proceedings from SIGCSE 2010: Nifty assignments. New York, NY.
Exploring Computer Science www.exploringcs.org
MyCS www.cs.hmc.edu/˜cs5grad/MyCS

 Programming in Kindergarten
A Playground Experience
Marina Umaschi Bers

In collaboration with Mitchel Resnick at the MIT Media Lab, and with funding from the National
Science Foundation, the DevTech research group at Tufts University is working on a new version of
Scratch specifically designed for children 5–7 years of age. Scratch Jr. is in its first stages of develop-
ment and pilot testing and will be released to the public within the next year and a half. This effort to

bring computer science to very young children is based upon research into developmentally appropriate
programming experiences.

Playgrounds are popular amongst five-year olds. They are designed to support the exploration of the
physical environment and the development of motor skills, to engage children in creative open-ended
play, and to promote social interactions. They are also probably one of the few spaces where children of
this age can be autonomous while exposed to minimal risks, such as bumps and scratches.

Now, think of a playpen. Playpens, big or small, serve to corral children into a confined space. Playpens
are in sharp contrast with playgrounds. They are risk-free, but there is no room for autonomous explora-
tion. The adult is in control of the toys and the play experience. There is no room for imaginative play.

Special
Issue
CS K–8

pe
rs

pe
ct

iv
es

8

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

In contrast with the playground, the playpen serves as a metaphor to convey the lack of freedom to
experiment, explore, be creative, and take risks. The playground promotes, while the playpen hinders, a
sense of mastery, creativity, self-confidence, problem-solving, and open exploration.

While most of today’s software marketed for young children remind us of playpens and not play-
grounds, software that engages them in programming, when presented in a developmentally appropriate
way, can provide a wonderful playground experience. Most software is marketed as educational because
young children can develop pre-academic dispositions and learn about shapes, colors, letters, sounds, and
numbers. However, from a developmental perspective, those are not the most important milestones for
children in this age range. This is a time for free exploration, testing boundaries, socializing, taking risks
in a safe way, engaging in pretend play, and solving problems autonomously.

In the DevTech Research Group that I direct, we are experimenting with developmentally appropri-
ate programming languages for early childhood education that allow similar kinds of experiences that
children encounter in the playground. For the last six years we have been working on the CHERP system
(Creative Hybrid Environment for Robotic Programming), that allows young children to program with
physical interlocking wooden blocks and to transition back and forth between the screen-based and the
tangible programming language. This hybrid approach allows them to work with multiple representa-
tions, in the same way that they learn math or literacy by using different media.

As important as our design of CHERP, is the theoretical approach that guides our use of it in the early
childhood classroom, the Positive Technological Development (PTD) framework. PTD provides an overall
playground approach and guides the design not only of a programming language developmentally appro-
priate for young children, but also a curriculum, classroom assessment tools, and a professional develop-
ment component for early childhood educators who are not sure how to welcome computer programming
in their classrooms, given their mandate to focus on literacy and math.

Over the years, young children have used CHERP to build LEGO towns with robots that stand upright
and wave their arms to greet town visitors and ballerinas that can sing and dance. Some have created
robotic flowers that grow out of the ground when there is light and plants that spin as people approach.
Many children have created sleds to recreate the Iditarod race in Alaska and others have made soccer play-
ers that can kick a ball and trains to transport animals to the zoo. They have also used all sorts of recycla-
ble materials to decorate and expand the robotic hardware.

At the DevTech group we take a playground approach to programming. There is playful learning, au-
tonomous decision-making (even if as adults we know that it will sometimes lead to initial failure), and
risk-taking. Children engage in social interactions and negotiations. Children work on the floor, on the
table, and on the computer and navigate among those physical spaces.

Programming in early childhood can engage children in a playground experience that serves the
fundamental developmental needs of young children. And it can also be a gateway to explore the notion
of sequencing, which is a fundamental building block for mathematics and literacy. Developmentally
appropriate programming software, such as CHERP and Scratch Jr., can be wonderful playgrounds for
young children because they encourage problem-solving, logical thinking, creativity, and love of learning
through playful explorations.

Learn more:
DevTech Research Group ase.tufts.edu/DevTech
Bers, M. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York,

NY: Teachers College Press.
Bers, M. (2012). Designing digital experiences for positive youth development. Playpen to playground.

New York, NY: Oxford University Press.

 K–8 Standards
Inconsistency from State to State

E ditor’s note: High school computer science (CS) education standards vary widely from state to
state. The picture of K–8 CS standards shows even greater inconsistency. To illustrate the situa-
tion, we interviewed three educators from diverse educational environments and locations to
learn about the status of K–8 CS standards in their states.

perspectives

9

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Ohio: Dave Burkhart teaches computer technology at Sheridan High School and is an adjunct faculty
member at Zane State College. He currently serves as the Policy Task Force Chair for CSTA.
North Carolina: Deborah Seehorn has worked as a business, finance, and information technology
education consultant at the North Carolina Department of Public Instruction for thirteen years. She
previously taught mathematics, business, and computer programming. Deborah also serves as the State
Department Representative on the CSTA Board of Directors.
Texas: Karen North served on the Texas Technology Application (TA) Standards CS writing team. She
lobbied to have CS concepts included in K–8 technology essential knowledge and skills. The Texas
Essential Knowledge and Skills (TEKS) now include programming languages as tools, and designing a
computer program as an activity, in the TA standards of writing a sequence of steps. Previously, she taught
high school CS, math, and technology systems, and was an elementary school technology specialist.

Does your state have standards for content that could be considered K–8 CS standards (based on
the learning outcomes in the CSTA K–12 Computer Science Standards)?
Ohio: Ohio has Technology Standards which are similar to CS standards (www.ode.state.oh.us/GD/
Templates/Pages/ODE/ODEDetail.aspx?page=3&TopicRelationID=1707&ContentID=1279&Content=109741).
North Carolina: There are Information and Technology Standards for K–12 (www.ncpublicschools.
org/acre/standards/new-standards/#it) that cover all K–12 curricula. The focus of the 6–8 Business,
Finance, and Information Technology curricula is on computer skills and applications, and exploratory
courses (www.ncpublicschools.org/cte/business/curriculum/programs). The Computer Skills and Applica-
tions course has been recently revised and does not have a blueprint of essential standards, but course
topics can be found by following the above link. The course consists of 12 modules, and the local school
systems can teach any modules, in any combination. The other middle-level course, Exploring Busi-
ness Technologies, does have a course blueprint of standards. There is a careers unit and information
technology activities.
Texas: Texas has added CS standards to the TEKS which mandate a variety of topics be taught within the
required technology application curriculum (www.tea.state.tx.us/index2.aspx?id=8192). The standards are
available at www.ittybittyurl.com/texasteks. I wrote a set of expectations intended to provide teachers with
ideas for implementing the standards. They are not part of the TEKS, but an additional resource for teach-
ers that incorporate ideas from the CSTA K–12 Computer Science Standards. The State Board of Education
has added computational thinking concepts to the Texas standards for mathematics education.

How typical is it that the standards are actually addressed in the classroom?
Ohio: Teaching CS standards in K–8 varies from teacher to teacher, building to building, and district to
district. There is no real consistency. The technology standards for K–8 are meant to be integrated into
the reading, writing, mathematics, science, and social studies curricula.
North Carolina: There is a better-than-average chance that the standards are addressed in the class-
room. The business curriculum in the middle grades is taught in all middle-level business programs, but
the schools have the flexibility to pick and choose which standards best meet the needs of their students.
Texas: The CS technology standards will be new to Texas teachers after the adoption process is com-
plete in the fall of 2012. Early feedback indicates that teachers are glad to have programming included
in the standards because it could mean getting the resources they need for their classrooms.

How are teachers prepared to teach content related to technology standards?
Ohio: Recent education graduates from Ohio colleges and universities have had more formal training
to address the standards than other teachers, for whom the level of training typically depends upon per-
sonal interests. Teachers depend upon professional development provided by their districts, the eTech
Ohio Conference, and the CSTA Ohio Chapter.
North Carolina: Grade 6–8 business education teachers are fairly well prepared through Career and
Technical Education (CATE) training at the state level. The Instructional Technology Division and leaders
in each local system provide training for the Information and Technology Standards implementation.
Texas: Teachers are trained to include the ICT technology standards, but few receive CS training. The
Texas Education Agency has contracted with one of the regional service centers to provide professional
development. We may, however, require some advocacy effort to ensure that classroom teachers can
access relevant professional development.

Special
Issue
CS K–8

pe
rs

pe
ct

iv
es

10

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Does the state make teaching resources or curriculum materials available to teachers?
Ohio: The state provides some examples, but local educational service centers create materials and re-
sources for teachers in their member schools.
North Carolina: Resources such as learning activities and content presentations are available to the
teachers on a password-protected Moodle PLC site. Some assessment items are also available.
Texas: Project Share provides online professional development for TA teachers (www.epsilen.com/
grp/1220137). CS is considered a TA course and does not receive Karl Perkins funding reserved for CTE
courses. Budget cuts have reduced the number of resources available to CS teachers.

What could your state do to better provide quality CS education to K–8 students?
Ohio: More funding and more professional development would improve technology instruction. How-
ever, technology is often a lower priority due to the pressures of testing. About 15–20 years ago, Ohio
provided computers to some classrooms through the SchoolNet program. Each year, computers were
provided to a specific grade level, beginning with kindergarten classrooms; the money ran out in the year
in which the seventh- and eighth-grade classrooms would have received computers. Generally, little state
money is available. Most of the responsibility for replacing or adding new computers falls to the discretion
and financial ability of local districts.
North Carolina: In a state with a large rural population, access to technology resources K–8 is an is-
sue. Until the digital divide is closed implementation will continue to be a struggle.
Texas: Require university teacher education programs to include computational thinking activities such
as computer programming and make CS part of every masters-level instructional technology program.
Labor and business have communicated that CS education is needed for developing the labor market and
improving the economy. Perhaps the business community will have a positive impact on CS education.
Even though Texas is not part of the Common Core Standards plan, it would help greatly if CS could be
included in this national standards movement.

 Computer Science: Critical K–8 Learning
Irene Lee

As computer science (CS) educators, we are often faced with skepticism about the necessity of
CS education for young students. State education departments and local school districts have
been reluctant to include CS education in the K–8 curriculum. Others question if CS education
is as important as reading, writing, and arithmetic. This article addresses these concerns by

describing the learning objectives of the CSTA K–6 CS standards, why they are critically important for
students, and how teachers can implement them in engaging ways.

CSTA’s goal in creating the new CSTA K–12 Computer Science Standards (2011) was to describe for teach-
ers, administrators, and policy makers the CS knowledge and skills that students must have to enable
them to thrive in the 21st Century global information economy. The standards were developed by a team
of K–12 educators, university and college faculty, research specialists, and curriculum specialists. To-
gether, they took into account the scope and sequencing of curricula that has been shown to be effective
in CS teaching and the developmental trajectories of young learners, as well as the serious constraints
many school districts face in terms of teacher training, curriculum innovation, teaching resources, and
dissemination. Revisions to the standards were informed by feedback from many sources, including
national education and professional organizations, CS educators, and computer scientists. The result-
ing CSTA standards document provides a framework for CS education at the primary and secondary
school levels.

By implementing these standards, schools can introduce the principles and methodologies of CS to all
students at all stages of their learning, whether they are college bound or workplace bound. We envision
that teachers of K–8 students will use the standards to implement CS activities in the context of other
subjects or within stand-alone introductory CS courses. We hope that administrators and policy makers
will use the standards to understand the importance of CS education as part of the intellectual develop-
ment of all students and that all who read the standards will see the important linkages between CS and
innovation across disciplines.

perspectives

11

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

The standards contain K–8 learning objectives in five domains (Computational Thinking; Collaboration;
Computing Practice and Programming; Computers and Communication Devices; and Community, Global
and Ethical Impacts) across two levels. The first level “Computer Science and Me” is aimed at grades
K–6 and the second level “Computer Science and Community” is aimed at grades 6–9. Level 1 introduces
elementary school students to foundational concepts in CS by integrating basic skills in technology with
simple ideas about computational thinking. At Level 2, students begin using computational thinking as a
problem-solving tool.

Five Reasons why CS Learning is Critical for K–8 Students

Reason #1: Thinking is Good for Thinking. We know that students at an early age are capable of thinking
algorithmically. They can apply sequencing, analysis, and testing in a number of computational settings to
prescribe an action or a behavior in space and time that they design for a computational agent. As a general
problem-solving strategy, this ability to understand and describe processes in time and space (algorithmic
thinking) becomes a strategy that students can add to their general problem-solving toolkit. This thinking
skill is not limited to solving problems in one domain; it is applicable in many domains. Furthermore,
students can develop habits of mind and perseverance in problem-solving that can last a lifetime.

Reason #2: Sustaining the Next Generation of Creators and Innovators. We need to support the
development of students as the next generation of creators and innovators. Watching young children play
with blocks and manipulatives, we see that they are capable of, and engaged in, creative play, innovation,
and exploration. Creating artifacts with computational tools is an extension of this creative play. As K–6
students are exposed to technologies through entertainment, communication, and social applications, it
is important that they see themselves as more than end-users or consumers. Computing power and the
skills to harness this power are the “engines of innovation.” Maintaining creative expression from early
experiences as creators and innovators using technology to the creation of new technologies is vital.

Reason #3: Empowering Students to Change the World. Bridging from early experiences as creators,
teachers can empower students to apply their creativity and skills to solve problems. In upper elementary
school, students can begin to experience computational thinking as a means of addressing community-
relevant issues. The learning experiences created from these standards can be made relevant to the stu-
dents and promote their perceptions of themselves as proactive and empowered problem-solvers within
their community and innovators capable of changing the world.

Reason #4: Preparing Students for Future Endeavors. Early exposure to the five strands in the CSTA
K–12 Computer Science Standards significantly impacts students’ progress towards higher-level CS classes
and programs. We all come to identify ourselves with what we make time for: our hobbies, interests, and
priorities. If CS activities and programs are not offered to young learners, they will have no opportunity
to develop a deep sense of their own technological potential. As students begin to master fundamental CS
concepts and practices, they learn that these concepts and practices empower them to create innovations,
tools, and applications.

Reason #5: Collaboration, Communication, and Teamwork—Key 21st Century Skills. Students work-
ing in teams often encounter multiple perspectives and create multiple solutions. Collaborative problem
solving prepares students to work in teams and builds supportive partnerships.

For all of these reasons, CS is critical to student learning from the very beginnings of their school experience.

im
pl

em
en

ta
tio

n

Special
Issue
CS K–8

12

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

 Teaching Kids Programming
Understanding the Intentional Method
Lynn Langit

T eaching Kids Programming (TKP) is a non-profit organization of volunteer programmers who
have developed a framework designed specifically for introducing basic programming to chil-
dren ages 10 and older. The only prerequisite is that the children have basic keyboarding skills.
The framework consists of lessons (“recipes”) and video-based guidelines for teachers. All mate-

rials are free at: www.TeachingKidsProgramming.org.
TKP teaching is based on the “Intentional Method.” The TKP Intentional Method means teaching by

guiding pairs of children to translate English comments—the Intention— into executable code. TKP uses
Microsoft SmallBasic, plus our open source extensions called SmallBasicFun. We have also developed In-
tentional teaching materials for Java, T-SQL, and for Microsoft Kodu (visual programming). Additionally,
TKP methods are based on Agile programming techniques (in particular XP). These include the use of core
Agile practices in the delivery of TKP courses.

•	 Pair Programming: both the students and the teachers work in pairs to learn and teach TKP material.
•	� No Big Upfront: teachers are advised how to guide the student pairs to write and execute their first

program within five minutes of the start of each TKP class.
•	� Test-driven Development: courseware is written so that students can be guided to translate one line of

English into one line of code and then to execute the result. This is a type of visual test-driven development.
•	� Sustainable Pace: careful attention is paid to the pace of the class. Students (within each pair) rotate

tasks either on task completion or on a regular time interval (such as five minutes). Pairs are also
switched at the end of each lesson.

•	� Rapid Feedback: in addition to the immediate visual feedback that the students get after they run
each line of code in the recipe, we use proctors in the classroom to keep the pairs on pace. In addition
to live proctors, the courseware includes a Virtual Proctor, which provides visual feedback (a screen-
shot of each successful execute).

•	� Craftsmanship: each recipe contains several sections, so that students can progressively master con-
cepts, APIs, and tools before being introduced to new information.

TKP coursework is designed to be modular. Each recipe is created to teach up to three core programming
concepts. Examples of such concepts are objects, properties, keywords, for-loops, and events. The course-
ware is designed to appeal to both genders and is currently being used in 15 U.S. states and 10 countries.

There are up to five sections to each recipe. Each section takes from 15–30 minutes to teach.
•	 Recipe: pairs are guided to create an output starting with Logo-like drawings.
•	� Recap: instructors re-do (recode) the recipe so the students have time to understand what they have learned.
•	 Variation: students do refactoring and then change their code.
•	 Quiz: pairs complete a short quiz in the IDE using the concepts just learned.
•	 Enrichment: pairs work to further reinforce concepts learned.

Learn more:
Teaching Kids Programming www.TeachingKidsProgramming.org
Small Basic smallbasic.com
Kodu fuse.microsoft.com/page/kodu

 Exploring Thinking Myself
Kiki Prottsman

T here is no colloquialism that says, “If at first you don’t succeed, give up and have a sandwich,”
and it is unlikely that such a phrase will ever become popular, as long as we continue to value
innovation and discovery. The idea of “working until you succeed” is embedded in the concepts
of scientific methodology, entrepreneurship, and of course, computer science (CS). Unfortunately,

the emphasis on graded assessments has made it difficult to encourage children to learn through failure.

im
plem

entation

13

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Thinking Myself (games.thinkingmyself.com) was created to encourage the try-and-try-again model. The
site is an educational adventure that encourages children to navigate individually through lessons, while
reading and playing games as they go. The freedom of trial-and-error learning is encouraged and the
pressure to be perfect is removed from the process. It was developed using preferences and learning styles
found to be desirable to girls over eight years of age.

The lessons of Thinking Myself encourage learning through exploration as they guide learners through
exploration of computational thinking concepts. The concepts are simplified and condensed so that young
children can easily absorb the lessons without adult explication. After an initial warm-up activity in which
students explore an undirected challenge called the “Machine without Instructions,” they are guided
through exercises on decomposition, patterns, abstraction, and algorithms.

These exercises use computational thinking terminology. Though it may seem inconsistent to simplify
the lesson while maintaining the vocabulary, the decision was made to reduce the fear of words so that
children would not automatically associate complex words with difficult concepts. Thinking Myself aims to
tame words that many adults find cringe-worthy.

In the first lesson, “Decompose,” students learn the word decomposition and work to break problems into
smaller pieces. After some instruction and an example, students decompose the problem in a sorting game.

In the “Patterns” lesson, students learn about patterns while searching through triangles in a tangram game.
The “Abstraction” lesson introduces ideas from CS, including inputs, outputs, and variables. The Ab-

straction game combines user input to create a specified output.
In the “Algorithms” lesson, students explore an algorithm in the form of a recipe and are then chal-

lenged to follow directions for a pirate treasure adventure.
While Thinking Myself is entertaining as a digital resource, all of the concepts can be presented in the

classroom with the free and reproducible materials at: games.thinkingmyself.com/analog.

 Game Programming with Alice
A Series of Graduated Challenges
Shannon Campe, Linda Werner, and Jill Denner

W ith the growing availability of child-friendly game programming environments, and the ap-
parent potential of this approach for engaging students in computer science (CS) concepts,
many teachers have started to integrate game programming into their classes. But there is little
guidance on how to most effectively and efficiently teach students what they need to know to

program a game.
Over the last ten years, with funding from the National Science Foundation, we have held game pro-

gramming classes for middle school students. Our most recent project focused on how middle school
students think computationally through programming games in Alice. Over 325 students (working solo
or in a pair) learned to program games using Alice as part of in-school and after-school elective technology
courses in seven California central-coast schools, resulting in 231 game projects.

We utilize a use-modify-create model for game design (Lee, 2011).
•	� Use: students play Alice games made by other students and adults and complete Alice-published

tutorials on the programming environment and basic operations.
•	� Modify: students follow step-by-step, self-paced written instructions called “challenges” that teach a

previously unlearned Alice programming feature and reinforce concepts learned in previous challenges.
•	 Create: students design their own unique game.

We created 17 “graduated” challenges that start with basic Alice programming and scene-design opera-
tions and move to more complex examples using combinations of operations. We found that this progres-
sion of challenges allows students to move at their own pace and learn a large number of Alice skills to
draw on during the “Create” stage.

Students complete the first 11 challenges before starting to program their self-designed games.
Within the first six challenges, students practice a variety of Alice features needed to create an interac-
tive game:

•	 scene setup;
•	 adding and modifying objects (including properties to make objects invisible);
•	 adding, creating, copying, and organizing methods;

im
pl

em
en

ta
tio

n

Special
Issue
CS K–8

14

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

•	 using the parallel programming instruction (“Do together”); and
•	 creating and using events.

The third challenge in the series introduces no new skills; students experiment with Alice features they
learned in the first two challenges and create their own Alice world. This challenge provides time to play
with Alice and is particularly appealing to students who resist following lengthy written directions.

The next subset of five challenges focuses on specific programming skills for creating games with Alice.
These later challenges are more complex and include:

•	 setting camera viewpoint within and between scenes;
•	 functions (e.g., use of proximity to create “collision detection”);
•	 setting up and moving to different scenes;
•	 variables (e.g., counters), if/else conditionals (e.g., used for game player questions); and
•	 parameters.

Students often identified additional skills they wanted to learn once they started designing and pro-
gramming their own games.

We created a group of six “bonus” challenges to address additional skills that students requested. These
challenges cover: creating and importing billboard objects for instructions, sound, light effects, vehicle
property (used to make objects move together), lists, loops, and more variable use (i.e., timers). This set of
challenges is used to keep the faster students engaged while the others finish the required challenges, so
all can move on to the game-design step together.

All of the challenge directions include features we found to be essential for students’ understanding.
For example, each has a list of learning objectives specific to that challenge, asks students to preview a
file showing what their completed challenge file should look like, and includes reminders to save and test
their files periodically; some include starter Alice worlds upon which to build.

The starter files include objects and Alice programming features students have learned previously and
assist students in focusing on learning a new programming feature. The challenges also include screen
shots of the working file whenever a new feature or operation is introduced, and less detailed instructions
for operations covered in previous challenges. Challenge directions and supporting Alice worlds can be
downloaded for use at the CSTA Source repository (csta.acm.org/WebRepository/WebRepository.html).

We are currently analyzing games and will compare them to the number and type of challenges
completed to determine if there is a correlation between the number of challenges completed and the
complexity of finished projects. We are curious to discover if students used only those Alice features from
the challenges or if they used Alice features we did not cover in the challenges. We have published and
reported upon some of our research findings at SIGCSE 2012 (Werner, 2012). We welcome your comments
and questions. Please send any inquires to Shannon Campe at: shannonc@etr.org.

Learn more:
Welcome to iGame psweb.etr.org/igame/demo/index.cfm
Lee, L., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011).

Computational thinking for youth in practice. ACM Inroads 2(1), 32-37.
Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science concepts via Alice game-

programming. Proceedings of the Special Interest Group on Computer Science Education (SIGCSE).

 Teaching Java to Fifth Graders
Vic Wintriss and Aaron VonderHaar

C onventional wisdom holds that ten-year-olds have not yet developed abstract thinking abilities suf-
ficiently to enable them to write computer programs—especially in Java. Our experience has been quite
different. At Wintriss Technical Schools, a small, non-profit, after-school program, Java professionals use
kid-appropriate terminology, training aids, and curriculum to teach children to write computer games.

Our teaching methods contribute to student success. Unlike classes that try to teach with lectures and
boring exercises, our students write complete games from the very first day. Ten volunteer professionals
mentor the students to create games such as Hi-Lo, Pong, Tic-Tac-Toe, Memory, and Asteroids. An autono-
mous robot competition further tests the skills and imagination of students.

im
plem

entation

15

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Java professionals are willing to volunteer to teach students when they learn that the teaching envi-
ronment is not a classroom of thirty students. Groups of about three students meet for two hours, once a
week, in a classroom of four Apple iMacs. Student-teacher relationship building is important and teachers
find that the strong relationships formed in this setting are very rewarding and an important feature of
the program. All of the volunteers are screened via LiveScan.

My job is to teach the teachers kid-appropriate teaching methods. Our volunteers avoid using scary,
technical terminology as much as possible before beginning students learn that they can actually write a
sequence of code that produces fun output.

Teachers describe how to make a blueprint (Java Class) “real” by using the Java keyword “new”, in-
stead of talking about instantiating a Class to create an object of the Class. Teachers also help students
conceptualize programming concepts; methods have a “mouth” (the space between the parentheses in a
method header), and you feed input parameters into a method’s mouth. Methods also have “guts” (the area
between the opening and closing curly brace in a method body) where the code for this method goes. The
method return type specifies what comes out of the guts!

We also introduce students to real-world contexts for many of the math concepts they are learning in
school by using the x-y coordinate system, trigonometry, and simple physics simulations in their games.
Because our teachers are Java professionals, they are not limited to pre-scripted projects. Their program-
ming expertise gives them the flexibility to adjust the games on-the-fly.

Five years of teaching Java to students from fifth grade through high school, have enabled us to develop
an extensive collection of projects. We use NetBeans as the IDE and Subversion for the source control pro-
gram. All student work is saved on a school server and accessible from home.

So far, four students have passed the Advanced Placement Computer Science (AP CS) exam; one in the
eighth grade, one in the ninth grade, and two in the tenth grade. Students who pass the exam have had the
incredible opportunity of being placed in paid, summer intern jobs. Our oldest student graduated from
high school this year and is now attending Stanford as a CS major. Most importantly, the students seem to
genuinely enjoy the new-found freedom of expression that comes with writing computer programs.

 Supporting Kids’ Explorations of Computation
Karen Brennan and Mitchel Resnick

Many kids today are comfortable interacting with computers, able to use standard applica-
tions, and search for information online. But how can we help them go further, so that they
can express themselves with computation and learn important computational ideas?

By learning to program, kids can develop a deeper understanding of, and greater fluency
with, computation. But there is a problem: traditional programming languages are difficult for kids, with
challenging syntax and lack of immediate feedback. To support kids’ explorations of computation through
programming, our research group—Lifelong Kindergarten at the MIT Media Lab—developed Scratch, a
graphical programming language that makes it easy for kids to create their own interactive media. To
create programs in Scratch, you simply snap together programming-instruction blocks, just as you might
snap together LEGO bricks or puzzle pieces. You can instantly see the effects of instructions whether you
click on an individual block or an entire stack of connected blocks. These qualities minimize the demands
of mastering syntax and support immediate feedback and incremental design.

Another major component of making programming accessible (and appealing) is helping kids make
connections to their personal passions and to other young creators. To do that, Scratch provides kids with
not just an authoring environment but also an online community, where tens of thousands of young
people (mostly ages seven to seventeen) have contributed more than 2.2 million projects since May 2007.
These projects represent a wide variety of interests and passions, from role-playing games to interactive
musical interfaces to simulated worlds, with creators using Scratch to make projects about their favorite
music, books, games, hobbies, and academic subjects. The online community serves as a large library of
creative inspiration and as a space for creative collaboration. Community members give each other feed-
back on work and team up to create projects bigger than they could have created on their own.

Creating with Scratch occurs in a variety of settings: in and out of school, across disciplines and ages,
from kindergarten to college. Out of school, many kids find Scratch on their own or through family and
friends. For example, Tim, a 9-year-old boy who loves to play The Sims, wanted to make his own simula-
tions. He found Scratch by searching online and learned Scratch by downloading projects from the online

im
pl

em
en

ta
tio

n

Special
Issue
CS K–8

16

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

community to see how they worked. He made his own Scratch-based people simulation, but created a
variety of other projects, including a stop-motion animation featuring a plastic shark, an animated music
video of his favorite pop song, and a greeting card for his grandmother. Tim taught his mother how to
create Scratch projects, and they collaborated on a role-playing game. Both mother and son were excited to
get positive feedback on their project after they posted it online.

We also see these connections to kids’ interests happening in schools. A fifth-grade teacher and her
students selected Aesop’s fables, brought them to life by programming animated stories, and shared their
projects online. A second-grade teacher and his students were studying animal tracks. They used Scratch
to program simulations of their favorite animals leaving tracks in freshly fallen snow and hosted parents
and friends for a Scratch open house. A computing teacher and fourth-grade visual arts teacher worked
with students to create interactive art in the style of a visual artist they were studying. Students incorpo-
rated images of themselves in the art and the class invited visitors to help with the works-in-progress. A
seventh-grade computer studies class was learning introductory programming through game design and
invited third-graders to serve as game testers for their maze projects.

Scratch is being used in a variety of settings to support kids’ explorations of computational ideas. With
an easy-to-use interface and an emphasis on connecting with interests and people, we see a wide variety
of kids deeply engaged in computational expression, including kids who might never have imagined
themselves as designers of interactive media.

ScratchEd (scratched.media.mit.edu) is an online community for Scratch educators, where members
share stories, exchange resources, ask and answer questions, connect with other educators, and find out
about upcoming events. You can view videos of teachers describing their experiences of working with
Scratch in the classroom or download the new Scratch curriculum guide for activity ideas. Teachers can
also participate in monthly meetups and workshops hosted at the MIT Media Lab, free monthly webinars,
and the biennial Scratch conference held at MIT (July 25–28, in 2012).

Learn more:
Scratch online community scratch.mit.edu
ScratchEd online community scratched.media.mit.edu
ScratchEd updates via Twitter twitter.com/ScratchEdTeam

 Logo: A Language for All Ages
Michael Tempel

L ogo is most often thought of as a computer environment for young children with an emphasis on
graphics. But it is much more. Logo is a sophisticated programming language, a dialect of LISP
that can be used by learners of all ages in a wide variety of ways.

A guiding principle of Logo development has been that it should have a “low threshold” and a
“high ceiling.” You should be able to enter the Logo room easily with no hurdles to jump over and no big step
up. Then, once inside, you should be able to move seamlessly from simple explorations to complex projects.

A second goal is that the Logo room should have “wide walls.” That is, people with different interests, tastes,
and learning styles should all be comfortable. There should be a variety of domains in which to develop projects.

In the 45 years since Logo began, the room has gotten bigger. The threshold is lower, the ceiling is
higher, and the walls have moved outward. To see how this has been happening we can begin with Logo
as it was known to most people in the early 1980s when it emerged from the research environment at MIT
and found its way into schools and homes. The most popular versions of Logo at that time were for the
Apple][. The turtle geometry component was by far the most widely used.

Young children could begin exploring shapes and write procedures to draw them. Simple shapes could
be combined into more elaborate designs. Older students could use the turtle for complex mathematical
explorations.

Turtle geometry is just one domain for Logo explorations and projects. During the early years of devel-
opment, Logo was used in many areas, including music, robotics, and language. In fact, the first versions
of Logo had no turtle. The name Logo, which means “word” in Greek, was chosen to emphasize that the
language was well-suited to working with words and sentences in contrast to the numeric focus of most
programming languages at the time. Over the past 30 years, hundreds of versions of Logo have been devel-
oped with increasingly diverse capabilities.

im
plem

entation

17

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Animations and Games

While turtles were crawling around on Apple][screens, personal computers that doubled as game ma-
chines—such as the Atari 800—supported colorful multiple turtles, also called “sprites,” that could wear
different costumes and be set in motion. Animations and video games emerged as the favored projects on
these machines. This functionality is now standard in many current versions of Logo, including Micro-
Worlds and Scratch. These modern implementations also include drawing tools and allow the importing
of different kinds of media, including images, video, sound, and music.

Robotics

In the mid-1980s, work on robotics versions of Logo was underway at the MIT Media Lab. Logo programs
received information from light, touch, and other sensors, and activated motors and lights. LEGO TC Logo
and Control Lab were widely used products that grew out of this research.

In the early 1990s work began on Programmable Bricks. The Brick, which you could hold in your hand,
had a microprocessor inside. As with the earlier Logo robotics environments, the Programmable Bricks
worked with sensors, motors, and lights. But now, with a downloaded program the Brick could be dis-
connected from the computer and move on its own, as part of a vehicle exploring its environment, for
example. The RCX and NXT from LEGO grew out of this project, along with several types of Crickets, which
are smaller programmable bricks.

Modeling and Simulation

Mitchel Resnick’s 1994 book Turtles, Termites, and Traffic Jams described Star Logo, a system he developed
to allow exploration and modeling of decentralized systems. Star Logo has thousands of turtles that can be
programmed to interact with each other and with patches of background. One can simulate the emergent
behavior of, for example, a termite or ant colony, or explore how traffic jams form or forest fires spread. A
similar program derived from StarLogo is NetLogo.

Blocks Programming

In 2006 a new version of Logo called Scratch was developed by the Lifelong Kindergarten Group at the MIT
Media Lab. It was designed to enable creation of games, animations, and multimedia projects. The key
difference from earlier versions of Logo with similar capabilities was the use of “Blocks Programming.”
Instead of lines of text, programs are constructed by snapping together blocks that fit into one another like
jigsaw puzzle pieces. Program structure is represented visually. A great advantage of Blocks Programming
is that it is almost impossible to make the kinds of syntax errors that are common with text programs,
those that result from typos and incorrect punctuation. The different types of blocks are of different
shapes and fit only where they are syntactically appropriate.

Blocks Programming did not originate with Scratch. It was first developed in 1995 as Logo Blocks for the
Programmable Brick, which is still in use today. However, the immense popularity of Scratch has brought
Blocks Programming to the forefront in the educational technology community.

Another important aspect of Scratch is the community that has grown around it. The Scratch website
has over a million members and almost two and a half million projects that have been posted. The forums
for discussion and sharing are part of the Scratch culture. Many projects are developed by remixing those
that were previously posted.

Logo is widely used at the elementary and middle school level where it can be integrated into many sub-
jects. This is less the case at the secondary and college levels, with the exception of StarLogo and NetLogo.
Concepts that students encounter in Logo-type courses, including structured programming, algorithms,
data types, and objects, support learning any programming language. After 45 years, Logo remains a
language for learning for people of all ages and accommodates an ever widening variety of interests and
learning styles.

Learn more:
Logo Foundation Web Site www.logofoundation.org
Logo Tree Project www.elica.net/download/papers/LogoTreeProject.pdf
Logo Update el.media.mit.edu/logo-foundation/pubs/logoupdate
Cricket gleasonresearch.com/prod.php?sku=SUPERCX
PICO Cricket www.picocricket.com
NetLogo ccl.northwestern.edu/netlogo
StarLogo education.mit.edu/starlogo

im
pl

em
en

ta
tio

n

Special
Issue
CS K–8

18

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

 Integrating CS into Middle School Projects
Adventures in Alice Programming
Susan Rodger

M iddle school students use computers in many aspects of their daily lives, yet the majority of
them do not experience computer science (CS) in school. The Adventures in Alice Program-
ming project (www.cs.duke.edu/csed/alice/aliceInSchools) encourages teachers in every disci-
pline to integrate computer programming as a tool for students to use in class projects. Alice

3D (alice.org) with its drag-and-drop interface, makes it easy for students to create simple animations and
has great potential for exciting students about CS in the same way that biology, chemistry, and physics
experiments can excite students about science.

To encourage the use of Alice in schools, we have developed free curriculum materials which are avail-
able on the project website. They include four types of tutorials and many sample worlds to fit different
disciplines. Getting-started resources range from short introductions to four-part, in-depth tutorials.
Animation tutorials include techniques for moving the camera and adjusting the lighting. CS concept
tutorials show students how to make a decision using an “if ” statement.

For language arts, a book report tutorial shows students how to animate elements normally found in a
book report. Unlike a static poster, the Alice book report may include one or more animations or interac-
tive quiz questions. A sample history tutorial about a bridge shows how to implement and switch between
several scenes. A language tutorial shows how to build an animation to teach Spanish. In one such tuto-
rial, a girl is baking and giving instructions in Spanish for the user to place particular ingredients into the
mixing bowl. A science tutorial shows how to build a helium molecule using sphere shapes.

Some tutorials teach about building games. There are a large number of tutorials for middle school
math games, including a game for testing inequalities, a game for multiplication facts, a game on plotting
points, and many more.

Duke University will be offering summer Alice workshops for teachers for the next four years. Under-
graduate students help run the workshops and work with teachers. The target audience is North Carolina
middle school and high school teachers who are not already teaching programming, including teachers of
language arts, math, science, history, music, art, foreign language, multimedia/technology, and business.
Collaborators on our grant will also be running workshops in South Carolina and Mississippi for the next
four years.

The project is supported by NSF ITEST grants, IBM Faculty Awards, and CRA-W DREU awards, and cur-
rently involves investigators at Duke University, College of Charleston, Columbia College, University of
Mississippi, Stanford University, and Carnegie Mellon University.

engagem
ent

19

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

 Introductory CS in the K–3 Classroom
Patrice Gans

W here is it written that computer science (CS) is a learning experience reserved for middle
and high school students? Fortunately, some schools across the country have made CS a
priority and are currently nurturing the art and joy of CS in primary school students. The
view of students as “creators” rather than just “consumers” is firmly rooted in my curricu-

lum at Fraser-Woods in Newtown, CT.
Over 26 years ago, the book Mindstorms: Children, Computers and Powerful Ideas by MIT Professor

Seymour Papert introduced the educational community to the concept that computers could serve as an
environment for “thinking about thinking” and, simultaneously, developed the first educational program-
ming language, Logo, designed specifically for elementary students. Papert envisioned a learning envi-
ronment where children would program computers to acquire “a sense of mastery over a piece of the most
modern and powerful technology.” Students would become masters of technology instead of just users.

As the technology boom continues to invade our homes and schools, it is increasingly important for
teachers to embrace Papert’s vision. I introduce my students to rudimentary CS principles beginning in
kindergarten with the application Ladybug Mazes and Ladybug Leaf from the Library of Virtual Manipula-
tives. The applications are similar to Logo; students create instructions (programs) to navigate a ladybug
across the computer screen by selecting the correct icon to move the ladybug in the required direction.
Steps are recorded in a plan window so that the students can visualize how each step contributes to the
ladybug’s overall movement.

After the students became proficient with the movement commands, they begin work with Ladybug
Leaf in which they use manipulatives to create geometric shapes. They start by creating programs to draw
squares and a rectangles and advance to creating parallelograms, triangles, rhombuses, octagons, and
hexagons. Finally, the students write programs to create their own designs.

The Ladybug Leaf and Ladybug Maze applications provide an informal introduction to CS without
any of the complications of a computer language or syntax. Initially, my students tackle the challenge
of navigating the maze by trial and error, mixed with a fair amount of frustration. However, as we work
together to understand the commands, the students are able to efficiently move the ladybug through
the maze. At this point, their frustration turns to elation. My second and third graders have similar
experiences with Ladybug Leaf. By the end of the unit, they are developing programs which enable them
to create beautiful geometric patterns. Developing code is no longer an enigma. They are proud to call
themselves computer scientists.

 Active Learning Ideas for K–5
Karen North

C omputer science (CS) is a design methodology that teaches students to analyze and design solu-
tions to problems. It doesn’t matter if the desired goal is writing a persuasive essay or writing
a mobile app—the skills from CS translate into creating the solution. In the elementary school I
focus on the following CS skills that are needed in every academic area:

•	 Designing solutions to problems	 •	 Comparing and contrasting
•	 Writing a sequence of steps	 •	 Looking for patterns
•	 Solving puzzles	 •	 Paying attention to detail

•	 Following directions	 •	 Developing spatial skills

Connecting the topics children love with CS concepts is a winning combination. Teach students to con-
trol their digital devices and include lessons on binary numbers. Operating robots also provides a natural
occasion to talk about algorithms. Students’ love of pets and animals provides a wonderful opportunity
to introduce them to careers in bio-informatics. The superhero devotees can explore digital forensics. As
teachers, we can start early to connect students’ interests to the world of CS. Ideas and resources abound
so I will focus on a few specific activities I have found to be engaging and easy to implement.

en
ga

ge
m

en
t

Special
Issue
CS K–8

20

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Binary Clock

I use a binary timer to visually introduce binary numbers and counting. My classroom binary clock challeng-
es students to convert a typical 12-hour clock to telling time in binary. I use the “fold-a-book,” normally used
to teach fractions, to create a booklet for drill and practice. Using an unfamiliar time recording system helps
students understand the passage of time and how time recording devices work. Young kids can make patterns
with zeros and ones, older learners can explore on their own by searching machine language or binary num-
bers. You can also download the binary clock and add it to your desktop (www.sb-software.com/binaryclock).
More details and lesson plans can be found on the IEEE TryEngineering website (tryengineering.org).

Bee-Bot

One of my favorite resources is the Bee-Bot programmable floor robot. It has six simple commands and
no computer interface is required. Students learn to sequence steps, a skill that is essential for processing
information in any area. After the basic six commands are mastered, students can add new CS concepts
and commands for distance, angle, procedures, and loops using the Pro-Bot robotic car.

Bee-Bot tools reinforce spatial learning, as well. Students create a robotic spelling bee in which they
must program the Bee-Bot robot to move from letter to letter on a floor grid to spell a word. With Bee-Bots,
students can practice mathematical number-line concepts through movement. First, students simulate the
program with their own bodies by walking the sequence of steps. Later, the sequence can be programmed
into the Bee-Bot. Add music, and students can create their own dance. The Dancing with Bees video can be
seen at: cscurriculum.shutterfly.com/35. Learn more about Bee-Bot and KinderLogo at: www.terrapinlogo.com.

WeScheme

My favorite programming resource for this age group is WeScheme. The cloud environment implements a
problem-solving methodology that can be applied to any problem. A popular project involves designing a water
cistern. In this project, students design their own solutions in WeScheme. This activity requires students to apply
skills in media computation and geometry. WeScheme is so simple that young children can use it. Advanced
lessons on programming with graphics can be found at: teachertech.rice.edu/Participants/knorth/Scheme/web
Scheme.html. The Programming with Graphics video can be downloaded at: cscurriculum.shutterfly.com/36.

Computer scientists will be vital to solving the problems of the world. That is why it is imperative to
begin producing those scientists today in elementary schools. This will require a change in attitude about
the role of CS education for young children and allocation of time and resources. Bringing about these
changes will require determination and rigorous work; and as my students say, “this is hard, but fun.”

 Media Mania with Kodu
Elisa Rossi

Media Mania is an elective class for seventh- and eighth-grade students in Southlake, TX, a city
located between Fort Worth and Dallas. Carroll Middle school offers three technology classes
teaching skills ranging from keyboarding to video game design. Media Mania includes photo
editing, movie making, and video game design using Kodu, a 3D visual programming environ-

ment in which students create their own visual worlds with terrains, characters, and complex behaviors.
I originally used Kodu as an extension activity, letting students use it independently during their free

time and provided little to no instruction. Students were eager to learn how to make exciting things hap-
pen and asked questions like, “How do I make the Kodu character disappear?” or “Can I make it lose points
after so much time has passed?” Because of their eagerness and motivation to learn more, I decided to
include it as a new unit of study. My students have created maze games, side-scrolling games, adventure
games, racing games, and many more. Most recently, students have figured out a variety of ways to create
an appearance of multiple-level games.

Kodu (fuse.microsoft.com/page/kodu) enables kids, typically ages eight and above, to create games on the
PC and XBox through a simple visual programming language. The Kodu Classroom Kit is a set of lessons
and activities that includes plans, tutorials, and a series of introductory videos. In the Kodu community
(KoduGameLab.com), students can discover games created by others and share their own games. Kodu
and the supporting learning resources are free. Each month a “gamejam” contest provides teachers and
students the opportunity to showcase their creativity in solving problems with Kodu (koduwebdnn.cloud
app.net/Home/tabid/55/forumid/6/postid/486/scope/posts/Default.aspx).

engagem
ent

21

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

For projects, I typically assign a game genre and basic game requirements such as including timers,
scoring, or cause-and-effect scenarios. The students are required to create a backstory and specific objec-
tives for each game. I also provide students with a set of the games created in class so they can enjoy them
or continue working on them at home. Most of my students have downloaded Kodu at home by now, and
come in talking about the games they are creating. They really seem to enjoy it and are disappointed when
it is time to move on to the next unit.

Kodu is a great starting point for learning about game design and basic computer science concepts. The
sentence-like structure of the language makes it is easy for students to comprehend the logical cause-and-
effect relationship of commands. I find that students who understand the basics are able to transfer that
knowledge to planning and programming in other languages.

Kodu Maze Game Activity

Objective: Create a Kodu maze game
Requirements:

•	 A backstory 	 •	 Two levels
•	 Instructions 	 •	 Power-ups
•	� Two main characters (one free 	 •	 A timed activity

roaming, one user-controlled)	 •	 Scoring

Planning:
•	 What is the objective of the game?
•	 How will my characters gain and lose points?
•	 Is there a way for characters to obtain special powers?
•	 How will the characters progress from one level to the next?

Maze Game Self-assessment

Title: ___

Creator: _ ___

Objective of game: _ __

List all active Objects in game:__

List all inactive Objects in the game:___

Are sounds or music included? If so, what is the purpose of the sound and/or music?

What are the best features of the game?__

What would you change to improve the game? __

List three programming techniques you learned in this project and describe how they were used.

en
ga

ge
m

en
t

Special
Issue
CS K–8

22

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

 10-Year-Old Detectives
Mark Dorling

T he Digital Schoolhouse (DSH) is a transition project established by Langley Grammar School
(LGS) in the United Kingdom to offer predominately Year 6 (10-year-old) pupils from local pri-
mary schools the opportunity to visit LGS for a day of learning in a dedicated Information and
Communications Technology (ICT) and computing environment.

To accommodate the different learning styles, the DSH has developed a variety of audio, visual, and kines-
thetic teaching activities. For example, pupils perform a human-database role play using SQL syntax to struc-
ture questions and then move around the classroom to stand in groups and arrange themselves into an order
depending on the answer. Higher-order questioning is also used to relate concepts to students’ “real world” un-
derstanding. This enables pupils to better grasp the skills and concepts being taught, and maximizes learning.

This year, the DSH has introduced a new lesson called Database Detectives based on the book Certain
Death by Tanya Landman. The aim of the lesson is to highlight the role of ICT and computing in the log-
ging and analysis of the data generated in the crime scene investigation lab and to illustrate how detec-
tives use the clues to solve crimes. Before completing the lesson, the teacher is encouraged to read the
book (except the last chapter!) and complete a series of numeracy puzzles loosely based on the book. The
puzzle answers provide pupils with the clues to identify the murderer.

Pupils use cloud computing technology such as Google Documents spreadsheets, to collaboratively in-
put data about the suspects from profile cards based on the book. Pupils then perform verification on their
neighbors’ data entry before downloading the spreadsheet and importing it into Microsoft Access. After
importing the data, pupils use the filter tools to solve the murder using the answers from the numeracy
challenges and then create reports for the Court based on queries identifying the murderer.

DSH pupils work with a primary-trained teacher, who also has secondary ICT teaching and industry ex-
perience, to learn new skills and concepts with a focus on how they are deployed in secondary education,
the world of work, and business. The DSH approach features a creative curriculum based on the proposed
changes to the British national curriculum. The creative curriculum links have been developed through
collaboration with school subject specialist teachers and the library resource center. The DSH is open two
days each week. The day starts at around 10:00 am and finishes at 2:30 pm. The DSH lesson is split into
three sessions lasting approximately 60 to 90 minutes.

The techniques in the DSH could have future applications in teaching pupils with special educational
needs or who have missed out on good ICT teaching in their earlier schooling. The program is currently be-
ing extended to cover post-secondary education topics like relational databases.

If you would like to discuss the concept of the DSH in more detail, please contact Mark Dorling at:
dsh@lgs.slough.sch.uk. Further reading about the project is also available from the Digital Schoolhouse
 (www.digitalschoolhouse.org.uk).

 College for Kids
Cindy James

F or many years, my son had attended the College for Kids program at Illinois Central College (ICC)
in East Peoria, IL—the same campus I had attended. The experience was a wonderful early oppor-
tunity for him and other young students to explore career choices.

Over the years, I had always noticed that the offered technology courses filled up quickly. After
witnessing the excitement and accomplishments in my K–8 technology classes in Norwood District 63, I
contacted Erica Peterson, College for Kids Program Coordinator, to offer more computing courses.

The three courses I proposed were accepted. Let’s Paint did not meet the enrollment criteria, but
Amazing PowerPoints was a big hit and Computer Programming with Etoys was full during both sessions.
The curricula for all three courses are available in the CSTA Source web repository (csta.acm.org/Web
Repository/WebRepository.html).

In Amazing PowerPoints, students explored a wide variety of features, including Custom Animations
and Motion Paths. Students left eager to create presentations to show-off their new skills to “amaze” their
teachers and peers.

engagem
ent

23

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

“Awesome” describes the Computer Programming with Etoys class; students were completely engaged
and begging for more each day. Etoys is a unique authoring environment that encourages both creativity
and problem-solving. Throughout the class we discussed the value of problem-solving skills and how, just
as in life, the more skills you have in your toolbox, the more able you are to solve the problems that come
your way. That is the answer to the age old question: “Why do I have to learn all this stuff?”

The lesson plans for eight days of Etoys activities are included in this publication and are available, along
with the others, in the CSTA Source web repository. Student projects can be viewed on the school website
(teacherweb.com/IL/Norwood63/MrsJamesTechnology/apt1.aspx) and on EtoysIllinois (www.etoysillinois.org).

 An 8-Day Plan with Etoys
Cindy James

E ditor’s Note: These lessons were originally delivered in a summer College for Kids program. Each “day”
is the equivalent of two 50-minute class periods. For a description of College for Kids refer to the
“College for Kids” article in this publication.

Objectives:

Students will learn basic computer science and game design concepts through the creation of an Etoys
animation. Students will develop problem-solving and logical-thinking skills.

Supplies:
•	 Etoys program for teacher and student computers (etoysillinois.org/download)
•	 Tutorial videos (waveplace.com/resources/tutorials)
•	 Internet connectivity
•	 Projector for the teacher computer

DAY 1: Introduction to Programming and Etoys
Activity: Show projects on Etoys Illinois Library Collections (www.etoysillinois.org).

Introduce terminology (Project, Supplies, Sketch, Halo, Sprite, Script, Stage and Background).
Instruct students to open the Etoys program and follow along with the Basic Etoys Lesson videos 01–04
(waveplace.com/resources/tutorials).

Learning: The ability to create and save a Project, use the Supply Box, create a Sketch, and use a Halo to
manipulate the Sketch; knowledge of basic programming and animation terminology.

DAY 2: Etoys Scripts & Viewers
Activity: Instruct students to follow the Basic Etoys Lesson videos 05–06 to begin their first Projects and

write Scripts.
Learning: Ability to create a simple animation.

DAY 3 & 4: Etoys Variables
Activity: Instruct students to follow the Basic Etoys Lesson video 07–08 to create variables in new or exist-

ing Etoys Projects and to test the accuracy of their programming.
Learning: An understanding of, and ability to use, variables in an Etoys Project; testing skills for use in

the next lessons involving animation and game creation.

DAY 5: Get Animated with Etoys!
Activity: Instruct students to follow the Basic Etoys Lesson video 09 to create and experiment with cos-

tumes for the animations in new or existing Etoys projects.
Learning: An understanding of animation concepts; the ability to create costumes and animations.

DAY 6: Game Creation with Etoys
Activity: Instruct students to follow the Basic Etoys Lesson video 10 to create animated games using new

or existing Etoys projects.
Learning: The ability to create a simple animated game.

DAY 7: Animated Stories
Activities: View examples of animated Stories on the Etoys Illinois website. Students will create simple

animated Stories. (etoysillinois.org/library.php?tags=Stories)
Learning: Students will learn how to create animated Stories.

en
ga

ge
m

en
t

Special
Issue
CS K–8

24

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

DAY 8: Sharing Student Work
Activity: Allow students time to complete storybook projects to post on Etoys Illinois. (Student work is

identified by first name and grade level only.)
Encourage students to download Etoys (free) at home for continued learning and skill development.

Learning: Increased competency with Etoys; continued development of problem-solving and logical
thinking skills.

 Press Play
An After-school CS Program
Rebecca Dovi

M ost middle school students fall into two after-school categories: latchkey kids who spend all
afternoon zoning at home in front of a computer game console, or daycare kids who spend
all afternoon away from home in an institutional setting doing arts and crafts projects.

While parents of middle school students see these as less than adequate options, com-
puter science (CS) teachers should see a golden opportunity.

In 2009, I started Press Play, an after-school CS club for middle school students which, in reality, is
operated by my high school CS students. The club is the perfect combination of creativity and engaging
technology but without the less desirable effects of other after-school options. To call the camp a success is
a huge understatement.

We operate the Press Play camp once a week for four weeks. Each session lasts two hours, which fills
that critical span of time between the end of the school day and the end of most parents’ work days. Trans-
portation in our district is simple; students ride the bus from a middle school directly to the high school
camp location.

We use Alice and Scratch; both are simple programming environments built with fun and function in
mind. Students create their own digital storytelling and simple, but fun game designs.

In addition to game design, students learn about robotics. LEGO Mindstorm products are a tried and
true way of engaging students in both computing and in simple engineering—and in the context of Press
Play, they are the perfect digital spokesmodel to convince middle school students that CS is the class to
take once they enter high school.

At the end of the four-week program, each student receives a t-shirt and a USB drive with their games
and stories, plus all of the software they used to make them so they can keep on “pressing play” at home.

The registration fee of $40 per student supports our high school CS program similarly to any fundraiser
and the high school students who teach the middle school students earn service experience. It is impos-
sible to overstate the value of this program as a recruiting tool.

Of the middle school students who have participated in the program over the past few years, about 40
percent take a CS course at the high school level.

By turning the Press Play into an after-school fundraiser run by my high school CS students, I’ve been
able to use Press Play for maximum benefit to my current CS students, to my program’s enrollment, and to
the benefit of my future students by giving them a fun preview of what to expect from CS classes in high
school.

 Computer Science as an Art Form
K–5 Fine Arts
Christopher Michaud

C omputer science (CS) equips students with unique skill sets similar to music and dance. The
skills to model reality through numbers, methods, and functions give CS a unique place alongside
music, dance, and drama as a way for humans to express creativity.

How do we teach CS to younger students? We deliver concepts and content sequentially through
culturally relevant activities to create and play games, tell stories, and run simulations that equip students
with the tools for digital self-expression.

engagem
ent

25

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Kindergarten, first-, and second-grade students experience learning through kinesthetic actives of
art, dance, music, drama, and sports. TuxPaint (tuxpaint.org) or other simple painting programs allow
students to express ideas in images, colors, lines, and forms. These activities develop user-interface skills,
lead students to think about objects in the computer as similar to objects in their drawings, and encourage
students to see technology as an expressive tool. I use painting, drawing, and text manipulation through
standard office software to teach third-graders the skills of manipulating text, creating and editing im-
ages, navigating a file system, and saving and retrieving their work. I teach CS concepts to fourth- and
fifth-grade students using Scratch, Lego NXT Robotics, and Python.

CS is taught in the domains of linear and event-driven sequences, methods, and models, which are
introduced sequentially and built one upon the other. First, students learn to arrange directions or com-
mands in a linear sequence. After students have mastered commands to animate, draw, and drive a robot,
we begin to label command sequences that we use over and over again.

Labeling sequences or creating methods (“methoding”) is the second domain. Creating methods that
can be reused represents an important step in understanding how to create a computer program.

The third domain is modeling objects. Through the use of data structures, students create virtual mod-
els of objects that “live” inside the program. The picture represents the character in a game or an object in
a simulation.

Scratch (scratch.mit.edu) provides a graphic programming environment that allows students to explore,
create, and remix graphics and sounds through animations, games, and simulations. Students extend the
music activities of singing, dancing, and drama onto the screen. Examples include interactive artwork
and storytelling. Students use Scratch to model movement with musical selections and use colors and
speed of movement to reflect the musical ideas in a selection.

Students further explore modeling concepts by creating virtual representations of musical instruments.
We use Scratch to create virtual instruments such as xylophones and drums (www.nebomusic.net/scratch
xylophone.html). Students use Lego NXT Robotics to perform dance routines and play instruments to take
their sequences and programs out of the “screen” and into the real-world.

I use the Python programming language to transition my fifth-grade students from Scratch to text-
based programming. The JES environment by Georgia Tech (code.google.com/p/mediacomp-jes/) provides
a platform for students to explore Python programming by manipulating pictures and sounds along with
“driving” Turtle graphic programming (www.nebomusic.net/techlesson11-5StudentDirections.html).

CS is a powerful tool to empower elementary students in the fine arts.

 Make it Fun!
CS in Elementary School
Dan Frost

F ive years ago, at the urging of my daughter’s fourth-grade teacher, my wife (a Director of Informa-
tion Technology) and I (a college-level computer science (CS) educator) took on the challenge of
teaching CS to fourth graders and making it fun!

This approach meant minimizing lectures and maximizing hands-on activities. It meant mak-
ing the class more like art or physical education, and less like math or writing. It meant that students
should feel lots of success. I wanted to promote the same feelings of universal success and recognition in
our CS class as was apparent in the display of the student art work on the classroom walls. The “fun prin-
ciple” is particularly important for a first exposure to CS, given the not-fun reputation our field sometimes
has in high school courses.

Author Marc Prensky labels today’s children “digital natives,” and I observed that first-hand in the
fourth-grade students. The school’s media center had a sufficient number of computers, the students
had studied keyboarding in third grade, and they had some experience with word processing and the
Web.

I decided that fun, creative, hands-on programming should be a big part of the class. I wanted a lan-
guage that gave immediate feedback and supported very short, interesting programs in under 20 key-
strokes. Because neither HTML nor JavaScript seemed fourth-grade friendly, I decided to create a version
of BASIC targeted to elementary children and delivered as a Java applet. I created it with precisely the
features I needed to work with children. Being a Java applet, it could run in the computer browser, elimi-
nating difficult installation issues.

en
ga

ge
m

en
t

Special
Issue
CS K–8

26

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

The resulting course was indeed a great deal of fun—for the fourth-graders and for my wife and me,
also. In each session, we introduced a new programming command, the students tried it out, and then
proudly showed off their accomplishments. Several times we have been told that, for some students, our
class was the highlight of the week.

In addition to programming activities, students learned about computer components such as input,
output, processing, and storage. Most of the students knew the term “algorithm,” so we examined algo-
rithm strategies such as guessing, computing, and trying each possibility. They explored other CS concepts
and terms including branching, repeating, subroutines, and kilo- and mega- prefixes. We put the CS les-
sons in context through discussions of computing careers and of people who have contributed to technol-
ogy developments.

The teachers and principal were excited to see the transfer potential of the CS skills students had
learned to the critical-thinking and problem-solving skills taught throughout the curriculum.

Over the past five years we’ve taught CS to about 400 fourth-, fifth-, and sixth-grade students. More
recently I created an applet version of the Logo language which is now our language of choice for fourth-
graders due to its graphics capabilities. The programming languages and support material are available
at: www.csed.org.

 Filling the Pipeline from the Middle School
Constance Seiden

T he Community College of Aurora (CCA) has applied for, and received, a Carl Perkins grant from
the Colorado Community College System Office to increase young women’s interest in technol-
ogy and computer science. This grant is enabling the department to train female middle school
students in new technology utilizing web-based applications to increase their interest in the field

and encourage them to pursue careers in technology.
Over the past decade, there has been a steady decline in the number of women entering technology

fields as reported by the UCLA Higher Education Research Institute. To address this disturbing trend, a
team from the CCA Computer Science Department, alongside industry volunteers, worked with the 20
middle school girls over the course of a week to create websites and explore technology career options.

Workshops were held in November and again in April of 2012, at Merrill Middle School in the Denver
Public Schools. The start of each session was led by a woman volunteer with a career in technology who
described her professional experience, hurdles, and accomplishments, and motivated the students to
explore the vast array of career options in technology. Following the presentations, the students used iPads
and MacBooks purchased with funds from the grant to create personal websites. The workshops were
outstanding successes. Students responded with, “Technology is fun,” “I can go far,” and “It’s the future
and it’s not intimidating.” The sites can be viewed at: www.ccaurora.edu/programs-classes/departments/cis/
merrill_MS.

Later in the spring, a Technology Preview Day was held at Aurora West College Preparatory Academy.
Forty-four eighth-grade girls attended the event. The girls were divided into two groups. While one group
created websites (www.ccaurora.edu/programs-classes/departments/cis/awp), the other group took apart a
computer, put it back together, and made it run. Afterwards, the Center for Outreach Recruitment spoke to
the girls about opportunities at the Community College of Aurora.

Meet the Authors

com
puter science K-8 authors

27

sp
ec

ia
l

iss
u

e
 ●

 C
o

mp
u

te
r

Sc
ie

nc
e

 K
–8

Valerie Barr
Union College, NY
Valerie is the Chair of the Department
of Computer Science where she
researches software testing. She
is also working on a campus-wide
computation program that will engage
all students in computing, regardless of
their field of study.

Marina Umaschi Bers
Tufts University
Marina is an associate professor in
the Department of Child Development
and Computer Science and heads the
Developmental Technologies research
group.

Karen Brennan
MIT Media Lab
Karen is a doctoral student in the
Lifelong Kindergarten group at the MIT
Media Lab and leads the ScratchEd
project.

Shannon Campe
Education, Training, Research
(ETR) Associates
Shannon is a Project Coordinator and
has taught and coordinated multiple in-
and after- school technology projects
for middle school girls and boys.

Jill Denner
Education, Training, Research
(ETR) Associates
Jill is a Senior Research Associate.
Her research interests include the role
of after-school programs in engaging
girls with information technology, and
the role of gender and culture in the
development of Latino youth.

Zachary Dodds
Harvey Mudd College, CA
Zachary is a Faculty member in the
Computer Science Department at
Harvey Mudd College and a developer
of the Middle-years Computer Science
(MyCS) curriculum.

Mark Dorling
Digital Schoolhouse
Mark is the Digital Schoolhouse project
coordinator recognized in the Royal
Society Report 2012, Board member
of Computing at School, and Lecturer
in the School of Education at Brunel
University in the UK.

Rebecca Dovi
Hanover County, VA
Rebecca is lucky to teach in Hanover
County where every high school has
a full time CS teacher. In Virginia, She
serves as the founding president of
the CSTA Central Virginia Chapter and
represents Virginia nationally in the
CSTA Leadership Cohort.

Mike Erlinger
Harvey Mudd College, CA
Mike is a Faculty member in the
Computer Science Department at
Harvey Mudd College and a developer
of the Middle-years Computer Science
(MyCS) curriculum.

Dan Frost
University of California Irvine
Dan is a lecturer in the Informatics and

Computer Science departments at UC
Irvine. He also teaches at the grade
school and high school levels as often
as possible.

Patrice Gans
Fraser-Woods, Newtown, CT
Patrice teaches technology to students
K–8. She also teaches Scratch in a
summer program at Naugatuck Valley
Community Technical College.

Cindy James
Norwood District, IL
Cindy teaches CS & technology for
Norwood District 63 (K–8) and in the
College for Kids program at Illinois
Central College in East Peoria, IL. Prior
to teaching, she spent 30 years working
in business focusing on efficiency and
technology in the workplace.

Lynn Langit
Teaching Kids Programming
Lynn is an expert on data technologies.
She teaches, consults, and writes on
cloud data, business intelligence, and
big data solutions. Her latest book is
Smart Business Intelligence Solutions
with SQL Server 2008. Lynn blogs at
www.TeachingKidsProgramming.org.

Irene Lee
Santa Fe Institute
Irene is the program director of Project
GUTS and the principal investigator of
GUTS y Girls, NSF-funded programs
that engage students in computational
thinking and modeling of locally
relevant issues as complex systems.

Daniel Mace
Langley Grammar School, UK
Daniel is an Advanced Skills teacher at
Langley Grammar School and delivered
the Philosophy for Computing lessons
for the Digital School House project.

Christopher Michaud
Nebo Elementary School, GA
Christopher currently teaches K–5
Music and CS and coaches the Paulding
County First Lego League Robotics
Teams. He teaches CS workshops
and summer camps with the Georgia
Institute of Technology ICE programs.

Karen North
CS Educator, TX
Karen was on the Texas Technology
Application Standards for CS writing
team. She lobbied to have CS concepts
included in K–8 technology essential
knowledge and skills. Previously,
she taught high school CS, math,
and technology systems, and was
an elementary school technology
specialist.

Kiki Prottsman
University of Oregon
Kiki founded Thinkersmith, a non-profit
organization focused on teaching CS as
a creative passion. She is enthusiastic
about the possibilities for bringing
computational thinking to mainstream
education.

Michel Resnick
MIT Media Lab
Mitchel is the LEGO Papert Professor

of Learning Research and head of the
Lifelong Kindergarten group at the MIT
Media Lab.

Susan Rodger
Duke University, NC
Susan is a Professor of CS. She leads
the JFLAP educational software project
(www.jflap.org) and works in the area
of CS education.

Elisa Rossi
Carroll Middle School, TX
Elisa has taught for 14 years in a
variety of computing topics such
as keyboarding, personal finance,
introduction to business, and now,
Media Mania and video game design.

Constance Seiden
Community College of Aurora, CO
Constance is a Faculty member in the
Computer Science Department. She
has worked to increase young women’s
interest in technology and CS through a
variety of middle school workshops and
events in Colorado.

Chris Stephenson
Executive director, CSTA
Chris is a long-time advocate for K–12
CS education. She is the author of
several textbooks, white papers, and
scholarly articles on CS and adaptive
technologies.

Roger Sutcliffe
SAPERE, UK
Roger is an expert in Philosophy for
Children (P4C) and past President of
the Society for Advancing Philosophical
wEnquiry and Reflection in Education
(SAPERE).

Elizabeth Sweedyk
Harvey Mudd College, CA
Elizabeth is a Faculty member in the
Computer Science Department at
Harvey Mudd College and a developer
of the Middle-years Computer Science
(MyCS) curriculum.

Michael Tempel
Logo Foundation
Michael is president of the Logo Founda-
tion, a nonprofit organization he found-
ed with MIT Professor Seymour Papert
in 1991. He has been developing Logo
software and teaching Logo to students
and teachers for more than 30 years.

Aaron VonderHaar
San Diego, CA
Aaron is a Java consultant and
volunteer teacher with Wintriss
Technical Schools.

Linda Werner
University of California Santa Cruz
Linda is an Adjunct Professor of CS
and works with Education, Training,
Research (ETR) Associates on
researching and developing Alice
game programing lessons.

Vic Wintriss
Wintriss Technical Schools
Vic is a Cornell Electrical Engineer
and founder of Wintriss Technical
Schools, an after-school program in
San Diego, CA.

ACM founded CSTA as part
of its commitment to K–8

computer science education.

CSTA
welcomes your comments.

E-mail:	cstapubs@csta.acm.org

Phone:	 1-608-436-3050

Fax:	 1-928-855-4258

